

CLOUD NATIVE

SECURITY
Your Guide to Containers /
Kubernetes Security

2

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

ABSTRACT
Moving to the cloud is more than a technical transition to new platforms. It’s part

of an organization’s growth strategy, with the transformation digitalizing its

operations. It brings new technologies together with new security risks.

This paper helps provide a basic understanding of a modern approach to

microservices and container technologies including Kubernetes. It explores the

challenges they raise together with possible solutions and introduces the Cloud-

Native Security platform.

AUDIENCE
This paper is intended for a technical audience, including security specialists

interested in gaining a quick understanding of recent security technological

trends, CI/CD pipelines, DevSecOps, containerization, and cloud transformation.

Readers should be familiar with the basic concepts of virtualization, networks, and

have a good understanding of security design.

3

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

TABLE OF CONTENTS

INTRODUCTION TO CLOUD-NATIVE TECHNOLOGIES .. 4

CI/CD and DevOps ... 4

Microservices .. 4

Virtual Machines and Containers.. 5

Pets Versus Cattle Meme ..6
What is Docker? ... 6

What is Kubernetes? .. 7

Node ..8
Pod ..9
Kubernetes Networking .. 10

SECURITY RISKS AND CHALLENGES .. 12

DevSecOps... 12

Development workflow security risk (CI/CD) .. 12

Shared Responsibility ... 16

CLOUD-NATIVE APPLICATION PROTECTION PLATFORM ... 19

Gartner’s definitions .. 19

The 4Cs Approach .. 20

K8s/Containers Security Architecture ... 22

CHECK POINT CNAPP SOLUTION OVERVIEW ... 23

Network Security in K8s Environment .. 24

North-South / East-West access control for Public Cloud (IaaS) ... 24
VMware NSX-T North/South and East/West Security .. 27
Web Application and API Protection (WAAP) .. 28

CloudGuard Posture Management ... 29

Log.ic .. 31

Admission Control .. 32

Vulnerability Assessment ... 32

Workload Protection ... 32

CONCLUSION .. 34

4

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

INTRODUCTION TO CLOUD-NATIVE TECHNOLOGIES

Cloud-native applications use containers, microservices, serverless functions, and code representing

infrastructure. Cloud-Native technologies accelerate software development and enable world-class enterprises

to create reliable, easily manageable, transparent applications with dynamic scalability.

CI/CD and DevOps

For mobile applications, web development, games, and e-commerce, the consecutive stages of design,

assembly, and testing should be as fast as possible. Instead of months, every step now takes hours or even

minutes.

For projects requiring a team of programmers, testers, and managers, where code changes need to be made

several times a day, a CI/CD approach is recommended. It is based on Continuous Integration, Continuous

Delivery, and Continuous Deployment pillars.

DevOps is a software development methodology focused on extremely active interaction and integration

between a team of programmers (Development) and testers and admins (Operations) who synchronously

serve a common service/product. DevOps is designed to effectively organize the creation and updating of

software products and services and is based on the following stages:

Let’s look at a few modern technologies and approaches that contribute to the popularity of DevOps.

Microservices

According to Wikipedia, Microservices is a software development technique, a variant of the service-oriented

architecture (SOA) structural style, that arranges an application as a collection of loosely coupled services. In

a microservices architecture, services are fine-grained and protocols are lightweight.

This provides multiple benefits: Modularity, scalability, integration of heterogeneous and legacy systems, and

distributed development.

Example (https://microservices.io/patterns/apigateway):

Let’s imagine you are building an online store that uses the Microservice architecture pattern and that you are

implementing the product details page. You need to develop multiple versions of the product details

user interface:

 HTML5/JavaScript-based UI for desktop and mobile browsers - HTML is generated by a server-
side web application

 Native Android and iPhone clients - these clients interact with the server via REST APIs

In addition, the online store must expose product details via a REST API for use by 3rd party

applications.

https://microservices.io/patterns/apigateway
https://microservices.io/patterns/microservices.html

5

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

A product details UI can display a lot of information about a product. For example,

the Amazon.com details page for POJOs in Action displays:

 Basic information about the book such as title, author, price, etc.

 Your purchase history for the book

 Availability

 Buying options

 Other items frequently bought with this book

 Other items bought by customers who bought this book

 Customer reviews

 Sellers ranking

 …

Since the online store uses the Microservice architecture pattern the product details data is spread over

multiple services. For example,

 Product Info Service - basic information about the product such as title, author

 Pricing Service - product price

 Order service - purchase history for product

 Inventory service - product availability

 Review service - customer reviews …

Consequently, the code that displays the product details needs to fetch information from all of these

services.

The Microservices approach enables the development of every microservice by a small, dedicated team, using

different programming languages, environments, and even deploying new versions into production

independently.

Virtual Machines and Containers

Every microservice needs to run somewhere. As they were built in different environments, it is hard to make

them work on a single server. Different services may require different libraries versions and can affect other

services on the server. At the same time, providing a separate Virtual Machine per microservice is too

expensive.

Container technology is a modern, lightweight approach for microservices isolation.

http://amazon.com/
http://www.amazon.com/POJOs-Action-Developing-Applications-Lightweight/dp/1932394583

6

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

Both virtual machines and containers are used to create isolated virtual environments. However, they have

significant differences critical for the cloud-native approach.

A container is a standard unit of software into which an application is packaged with all the dependencies

necessary for its operation - the application code, launch environment, system tools, libraries, and settings.

Containers use the host operating system's kernel and contain only apps and some lightweight operating

system APIs and services that run in user mode. This differentiates them from Virtual Machines running a

complete operating system including their own kernel.

Containers provide lightweight isolation from the host and other containers but don't provide as strong a

security boundary as a VM. They run the user-mode portion of an operating system and can be tailored to

contain just the necessary services for your app, using fewer system resources.

Pets Versus Cattle Meme

There is an interesting metaphor explaining the difference between virtual machines and container

infrastructures.

In 2012 Randy Bias gave an impactful talk and established the pets versus cattle meme (Randy attributed the

origins to Bill Baker):

 With the pets approach to infrastructure, you treat the machines as unique systems, which can
never be down. Each pet server might have “pet” names like Poseidon or Vakhmurka. They are
“unique, lovingly hand-raised, and cared for, and when they get sick, you nurse them back to
health”.
This approach is generally considered to be the dominant paradigm of a previous (non cloud-native)
era, although it is still applicable for mainframes, databases, firewalls, etc.

 With the cattle approach to infrastructure, servers are given identification numbers like web01
and app-fin-14, the same way cattle are given identification numbers tagged to their ears. Each
server is “almost identical to each other” and “when one gets sick, you replace it with another one”.
Scalability is provided by creating more. If one fails it is just replaced with another one, as is done
with a faulty hard disk drive.

Figure 1 Pets vs Cattle

What is Docker?

Docker is an open-source technology used to deliver software in packages called containers. A typical Docker

image consists of several layers. Each layer corresponds to certain instructions in the Dockerfile. In the

example below, you can see the container image consisting of 4 layers: Operating system (Ubuntu), Apache,

MySQL, and PHP with modules.

It is important for a “host” operating system to be another Linux distributive, which gives very good flexibility.

7

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

Such images can be stored in private or public registries like Docker Hub, Google Container Registry, Amazon

Elastic Container Registry, etc.

What is Kubernetes1?

Besides running containers (Docker is one of the run-time platforms for this), it is necessary to automate

application deployment, scaling, and management. That’s why an orchestrator is also needed.

Kubernetes (commonly stylized as k8s) is an open-source container orchestration engine for automating

deployment, scaling, and management of containerized applications. Kubernetes is often used to provide a

platform or infrastructure as a service (PaaS or IaaS), and many vendors provide their own Kubernetes

distributions.

The control plane’s components make global decisions about the cluster (for example, scheduling), as well as

detecting and responding to cluster events (for example, starting up a new pod when a deployment’s replicas

field is unsatisfied).

1 Drawings and definitions in this chapter were taken from the https://kubernetes.io/

https://kubernetes.io/

8

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

Control plane components can be run on any machine in the cluster. However, for simplicity, set up scripts

typically start all control plane components on the same machine, and do not run user containers on this

machine. Multi-master configuration is recommended for reliability.

Kube apiserver

The API server is a component of the Kubernetes control plane that exposes the Kubernetes API. The API

server is the front end for the Kubernetes control plane.

Etcd

Consistent and highly-available key-value store used as Kubernetes’ backing store for all cluster data.

Kube scheduler

Control plane component that watches for newly created Pods with no assigned node and selects a node for

them to run on.

Kube controller manager

Control Plane component that runs controller processes.

 Node controller: Responsible for noticing and responding when nodes go down.

 Replication controller: Responsible for maintaining the correct number of pods for every
replication controller object in the system.

 Endpoints controller: Populates the Endpoints object (joins Services & Pods).

 Service Account & Token controllers: Create default accounts and API access tokens for new
namespaces.

Cloud controller manager (optional)

A Kubernetes control plane component that embeds cloud-specific control logic. The cloud controller manager

lets you link your cluster into your cloud provider’s API, and separates out the components that interact with

that cloud platform from components that just interact with your cluster.

If you are running Kubernetes on your own premises, or in a learning environment inside your own PC, the

cluster does not have a cloud controller manager.

Node

The working nodes in a Kubernetes cluster are the machines (VMs, physical servers, etc.) that run your

applications and cloud workflows. The Kubernetes master controls each node, assigning individual Private IP

subnets for every node.

9

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

Kubelet

An agent that runs on each node in the cluster, making sure containers are running in a Pod. The kubelet

doesn’t manage containers not created by Kubernetes.

Kube proxy

Is a network proxy that runs on each node in your cluster, implementing part of the Kubernetes Service

concept.

The container runtime is the software responsible for running containers.

Kubernetes supports several container runtimes: Docker, containerd, CRI-O, and any implementation of the

Kubernetes CRI (Container Runtime Interface).

Pod

A Pod (as in a pea pod) is a group of one or more containers (such as Docker containers), with shared

storage/network, and a specification for how to run the containers.

Containers within a Pod share an IP address and port space and can find each other via localhost. A “pause

container” owns the Pod’s IP address.

Pods serve as a unit of deployment, horizontal scaling, and replication.

Any container in a Pod can enable privileged mode, using the privileged flag on the security context of the

container spec. This is useful for containers that want to use Linux capabilities like manipulating the network

stack and accessing devices.

Processes within the container get almost the same privileges available to processes outside a container.

Sometimes the Pod might encapsulate an application composed of multiple co-located containers that are

tightly coupled and need to share resources (Pod1). However, the “one-container-per-Pod” model is the most

common Kubernetes use case (Pod2).

10

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

Kubernetes Networking

Figure 2 – Kubernetes Networking

The Kubernetes master controls each node and assigns individual Private IP subnets for every node. For

example, 10.1.85.0/24 for Node2 and 10.1.23.024 for Node3 on the picture above.

Each Pod gets its own IP address. However, Pods are ephemeral. The set of Pods and their IP addresses

running in one moment in time could be different from the set of Pods and their IP addresses running that

application a moment later. Pod1 has an IP address 10.1.85 but most likely it will have another one after a

restart.

There are different ways to establish communication between nodes. It is implemented by the use of different

Container Network Interfaces (CNI).

Option 1 - unencapsulated

Pod2 (10.1.85.26) running on Node2 (172.16.1.12) tries to reach Pod3 (10.1.23.2) running on Node3

(172.16.1.13) by sending packets to its default router (172.16.1.1). The router forwards the packet 10.1.23.2

to the 172.16.1.13 (Node3) according to its routing table. And finally, the packet reaches its destination.

This is the Calico CNI plugin approach. Instead of static routes, it often uses BGP (Border Gateway Protocol).

Option 2 – encapsulated

Another CNI plugin (Flannel) uses another approach by default. It configures a layer 3 IPv4 overlay network

and creates a large internal network that spans across every node within the cluster. Traffic is routed to pods

on different hosts being encapsulated in UDP packets by flanneld.

By default, it uses VXLAN for the encapsulation. Also, it can work in other modes (BGP) and support plugins

extending its functionality (for example, it can use Strongswan to encapsulate and encrypt the packets).

There are many other options, of course.

A Service is an abstraction, which defines a logical set of Pods and has a fixed IP address. The set of Pods

targeted by a Service is usually determined by a selector (labels). A service svc-web with a fixed IP address

10.152.183.95:80 will distribute traffic to pods with labels app=Web (targetPort=8080).

11

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

Service works as netfilter on each node and is effective for communication between pods. In order to make it

accessible outside, it needs to be exposed using NodePort or other mechanisms.

Ingress is an API object that manages external access to the services in a cluster. It exposes HTTP and

HTTPS services and makes them available from outside the cluster. It may provide load balancing, SSL

termination, and name-based virtual hosting.

We will explore this in more depth later, together with the security aspects.

12

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

SECURITY RISKS AND CHALLENGES

DevSecOps

While the DevOps approach implements security checks at the final stages of the software development life

cycle, DevSecOps has a tendency to automate all security checks and use them from the very beginning of

software development on each and every stage of the CI/CD pipeline.

This is especially important because, according to the modern approach, new features can run into production

several times a day.

Development workflow security risk (CI/CD)

A typical development workflow includes the following steps: Develop, test locally, commit code to the version

control system; CI/CD system takes this code, builds it, pushes it to the Docker compose which builds a

container also using images and packages from public repositories and places it into the public or private

registry; after successful staging the container goes to production.

These steps bring additional security risks.

13

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

1. Code with vulnerabilities

Company software developers can write a code containing

vulnerabilities, credentials, or contain other potential security issues.

They can use external libraries (for example, downloaded from the

GitHub) which bring additional risks (poor code quality or even specially

crafted backdoors).

Example:

Hardcoded credentials are a very common way to obtain unauthorized

access.

Figure 3 Hardcoded credentials

2. Supply chain attacks

Containers are usually built on top of images from public registries and

added packages from public repositories. They can be compromised

intentionally, replaced by hackers after hacking the registry. The use of

repositories (RPMs and other dependencies) maybe not be safe as well.

Example:

In 2019 the Docker Hub repository was breached, 190K accounts were

compromised. Images may have been tampered.

14

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

Figure 4: Docker Hub breach

3. Insecure posture

Improper environment configuration (file permissions, access rights,

etc.) could have a serious negative impact. There are many benchmarks

(CIS Kubernetes Benchmark to name one) providing lists of a hundred

items to check, which is hard to do manually on a regular basis.

Example:

CIS Kubernetes Benchmark provides prescriptive guidance for

establishing a secure configuration posture for Kubernetes to avoid

attacks like “Send malicious YAML and JSON payload causing API

server to consume excessive CPU or memory or even crashing and

becoming unavailable”.

Figure 5 CIS Kubernetes Benchmark

15

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

4. Infrastructure vulnerabilities

The infrastructure itself could have vulnerabilities (multiple CVEs for Docker, Kubernetes, and plugins like

“execute code”, “bypass something”, and “gain privilege”), which must be addressed.

Example:

Containers accidentally ran as root gaining permissions, as host processes have.

Figure 6 Non-root containers run as root

Figure 7 Kubernetes CVEs

16

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

5. Kubernetes networking challenges

Workers nodes and Pods have flat network architecture. This means

each and every container (pod) can talk to any other one. This brings the

legacy security issue of massive infection of the entire environment in a

case where one of the containers has been compromised and infected

by malware (known as lateral movement).

Communication between Pods can hardly be controlled. Moreover,

containers are ephemeral. They usually start on new IP addresses,

which makes traditional IP-based firewall policies useless.

Egress traffic from containers is usually NATed behind the node IP

address, which makes it impossible to enforce granular policies.

6. Ingress SSL inspection

If SSL decryption is implemented on the Ingress, attacks in the SSL bypass traditional security gateways.

There is also a new attack surface: API gateways widely used in the microservices architecture and based on

the REST API (also encrypted).

Example:

Figure 8 SSL inspection

It is difficult to provide access control (providing access to fin-web only to FIN group but not HR) because both

resources (https://dom.com/fin and https://dom.com/hr) have the same domain name and IP address, while

the path is encrypted and not visible to the perimeter gateway.

IPS and other security checks are also inapplicable.

Shared Responsibility

At some point, enterprises are likely to use all the available cloud services, including the public IaaS, PaaS,

FaaS and SaaS. The issue is all these platforms have different operational benefits, shared responsibilities,

and security challenges.

In traditional IT environments, the enterprise owns the whole stack and the dedicated security team makes the

necessary infrastructure changes. In the cloud, some responsibilities are transferred to cloud service providers,

17

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

and some are transferred to application owners. Shared responsibility models challenge the traditional models

of security implementation, management, and administration.

Leading research and advisory company, Gartner, stated that “through 2020, 95% of cloud security failures

will be the customer’s fault”. Our own analysis also concludes that customer misconfiguration is the most

common reason behind cloud security breaches. We believe this is partly due to customers thinking the cloud

provider has secured, monitored, and appropriately configured the environment.

Enterprises must be aware that when they implement cloud-native security controls and integrate with solutions

such as FaaS, PaaS, and SaaS, they need to take responsibility for the new cloud security policies such as

access control, data protection, application activity visibility, content-awareness, and threat prevention.

Figure 9 Shared responsibility for the user and business process owner between the cloud computing models

We believe as organizations shift towards SaaS and FaaS services, security responsibility will change and

traditional technology teams will have a different role to play in enforcing the organizational security policy.

There are a number of different ways we see this happening; either through the assimilation of existing DevOps

teams to form DevSecOps teams, or by moving into security assurance and responsibility roles.

This shift in security responsibility means that although the Security team still has overall responsibility for the

security posture, the implementation of security is done by Application and DevOps teams. Therefore, it is

important for the cloud transformation process to capture who is actually going to own the implementation of

security and who is responsible for its management.

For example, an existing DevOps team is responsible for securing their application and moving the app to a

PaaS platform. They have to abide by the organizational security policy of installing the Check Point WAAP

agent into the ingress node. The responsibility for this install is with the DevOps team. Once the install is

complete, the Security team will monitor the traffic.

The graphic below shows an example of the various cloud technology services and how security responsibility

is shared between the Security team, Network team, and Application teams as organizations move towards

full cloud-native technology and development practices.

Phase I Phase III

Security
teams

Network Access
Control

Data Security

System Monitoring

OS Hardening

Visualization

Appliances

Network

Infrastructure

Application Security

User Access Control

Security Governance

Data Classification &
Accountability

M
an

aged
 b

y B
u

sin
ess P

ro
cess O

w
n

er (B
P

O
)

M
an

aged
 b

y B
u

sin
ess P

ro
cess O

w
n

er
P

ro
vid

ed
 as a Se

rvice

M
an

aged
 b

y B
P

O
P

ro
vid

ed
 as a Se

rvice

M
an

aged

b
y B

P
O

P
ro

vid
ed

 as a Se
rvice

Network Access
Control

Data Security

System Monitoring

OS Hardening

Visualization

Appliances

Network

Infrastructure

Application Security

User Access Control

Security Governance

Data Classification &
Accountability

Network Access
Control

Data Security

System Monitoring

OS Hardening

Visualization

Appliances

Network

Infrastructure

Application Security

User Access Control

Security Governance

Data Classification &
Accountability

Network Access
Control

Data Security

System Monitoring

OS Hardening

Visualization

Appliances

Network

Infrastructure

Application Security

User Access Control

Security Governance

Data Classification &
Accountability

Network Access
Control

Data Security

System Monitoring

OS Hardening

Visualization

Appliances

Network

Infrastructure

Application Security

User Access Control

Security Governance

Data Classification &
Accountability

M
an

aged

b
y B

P
O

P
ro

vid
ed

 as a Se
rvice

Application
teams

Security
officer

Security
Responsibility

Security as a Service

18

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

Figure 10 Security oversight and shared security responsibility in cloud-native environments

19

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

CLOUD-NATIVE APPLICATION PROTECTION

PLATFORM

Gartner’s definitions

The Check Point CloudGuard portfolio aims to deliver the industry’s most advanced threat protection to keep

cloud networks, data, and applications protected from sophisticated Gen V cyber-attacks. The comprehensive

portfolio is seamlessly integrated with the largest number of cloud platforms and cloud-based applications to

instantly and easily protect any cloud service.

Besides well-known Network Security, the Cloud-Native Security concept brings new terminology, such as

Cloud Security Posture Management, Workload Protection, API protection, Cloud Intelligence and Threat

Hunting.

Figure 11 CloudGuard: Any Cloud, Any Asset, Any Application, Unmatched Security

Check Point unifies all these terms and technologies and provides a holistic solution to secure Cloud-Native

environments using comprehensive techniques addressing all aspects of cloud security such as containers,

Kubernetes, and CI/CD pipeline.

 CPSM – Cloud Security Posture Management

Security, governance, and compliance automation for public clouds and Kubernetes

environments. With continuous visibility and control that helps organizations minimize their attack

surfaces and protect against vulnerabilities, identity theft, and data loss in the cloud.

 CNSS – Cloud-Native Security Services

Mostly relates to Public and Private IaaS security and leverages virtual Firewall with extended

protections, WAF/WAAP to perform macro and micro-segmentation.

 CWPP – Cloud Workload Protection Platform

Automated security for any workload, in particular AWS Lambda functions and Kubernetes.

Provides seamless vulnerability assessment and creates deep code flow analysis and behavioral

profiles in runtime for unmatched protection - with minimal performance impact.

20

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

The concept of a single Cloud-Native Security Platform or, as Gartner describes, a Cloud-Native Application

Protection Platform (CNAPP), is the combination of Cloud Workload Protection (CWPP) and Cloud Posture

Management (CSPM) into a single platform.

This approach aligns with Check Point’s vision of a single overarching security platform in and on which, all

Cloud-Native Security functions are built. The infographic below shows this approach whereby Check Point

Cloud Guard Dome9 becomes the CNAPP.

Figure 12 Check Point Infinity CNAPP

The 4Cs Approach

Security, in general, is an immerse topic, which has many interconnected parts. For Cloud-Native Security a

4Cs approach can be applied. It is a layered approach based on 4Cs: Cloud, Cluster, Container, and Code.

Figure 13 Source: https://kubernetes.io/docs/concepts/security/overview/

This approach summarizes the typical pains in Cloud-Native Security environments and makes obvious the

need for layered security solutions, which cover multiple layers in a unified manner, complementing each other

and providing seamless protection.

https://kubernetes.io/docs/concepts/security/overview/

21

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

Cloud

In many ways, the Cloud (co-located servers, or the corporate datacenter) is the trusted computing base of a

Kubernetes cluster. If these components themselves are vulnerable (or configured in a vulnerable way) then

there’s no real way to guarantee the security of any components built on top of this base. Each cloud provider

has extensive security recommendations they make to their customers on how to run workloads securely in

their environment.

Cluster

There are two main areas of concern for securing Kubernetes:

 Securing the non-configurable components which make up the cluster.

 Securing the components which run in the cluster.

Container

In order to run the software in Kubernetes, it must be in a container. Because of this, there are certain security

considerations that must be taken into account in order to benefit from the workload security primitives of

Kubernetes.

Code

Moving down into the application code level, this is one of the primary attack surfaces over which you have

the most control.

Figure 14 4C approach

22

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

K8s/Containers Security Architecture

Figure 15 Cloud-Native Security Concept (4C)

Cloud-Native Security is mostly covered by the following product family:

CloudGuard IaaS: Cloud Network Security & Threat Prevention

 Cloud network security gateway including Firewall, IPS, Application Control, IPsec VPN, Antivirus
and Anti-Bot.

 DevSecOps automation auto-provisioning and auto-scaling along with automatic policy updates.

 Central management unifies threat visibility and enforcement across cloud and on-premise
infrastructures.

DOME9: Cloud Security Posture Management

 Posture management: Continuous analysis of security posture from CI/CD to Production plus
automatic remediation.

 High fidelity security: The broadest and most flexible CSPM platform, with over 2000 out of the box
rules.

 Unified: Visibility and control across all cloud assets leveraging a single global security language.

Workload Protection

 Vulnerability & posture management: Detect over-permissive permissions, vulnerabilities and
embedded threats.

 Runtime protection: Multi-layer security, leveraging machine learning to automatically profile and
protect workloads.

 Governance & DevSecOps: Enforce granular security policies during CI/CD and production.

WAAP: Web App & API Protection

 Complete application security: From OWASP top 10 attacks to zero-day API attacks, and malicious
bot traffic.

 Automated: Self adapts to application changes, eliminating the need for manual updates and
firewall rule tuning.

 Flexible deployment: Provisioned as a reverse proxy, proxy servers add on, or as an ingress
controller on K8s.

23

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

LOG.IC: Cloud Intelligence & Threat Hunting

 Threat hunting: Detect cloud activity anomalies in a real-time, leveraging machine learning and
through dedicated threat research.

 High Fidelity Context: Combining cloud configurations, VPC Flow Logs, cloud Logs, vulnerability
data & Check Point’s Threat Cloud.

 Actionable Intelligence: Intuitive visualization, querying, intrusion alerts, and notifications.

CHECK POINT CNAPP SOLUTION OVERVIEW

Following the 4Cs approach, Check Point offers solutions for each part (and even more).

These capabilities, shown in the diagram below, are essential building blocks of Check Point Unified Cloud-

Native Security.

Figure 16 Check Point response to 4C challenges

24

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

On the below diagram you can find a reference architecture.

icons represent small (nano) agents, installed on the specific node or as a daemon-set.

Figure 17 Reference architecture

Each section will be explained below.

Network Security in K8s Environment

Network security in K8s environments has the same definition as in regular networks to control North-South

and East-West traffic flows. However, in the K8s platforms, these capabilities are usually achieved by

leveraging different technologies with the dependencies of cloud platforms, e.g. Public Cloud AWS/Azure/GCP

or Private Cloud VMware NSX-T.

North-South / East-West access control for Public Cloud (IaaS)

The core principle of network access control in the K8s environment is based on tight integration and

communication with the Kubernetes management master node system in order to obtain relevant information

about PODs and containers, as well as enforcing intra-POD security access policy.

For the North-South traffic inspection, the R81 SmartCenter API is being used to connect to Kubernetes

management, while for East-West traffic control CloudGuard Dome9 leverages its native ability to

communicate with Kubernetes and enforce security through the NetworkPolicies internal functionality of the

Kubernetes cluster.

25

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

Figure 18 CloudGuard IaaS N-S and E-W protection

North-South

North-South security can be achieved by deploying CloudGuard IaaS, which provides cloud network security

and advanced threat prevention for public, private, and hybrid cloud environments. Security features include

Firewall, IPS, DLP, Application Control, IPsec VPN, Antivirus, and Anti-Bot. Customers purchasing SandBlast

benefit from Threat Extraction and Threat Emulation.

With R81, CloudGuard IaaS provides unified and consistent security management of all public, private, and

hybrid environments. For customers with on-premise environments and who are in the process of migrating to

the cloud, CloudGuard IaaS enables the easiest, quickest, and most secure cloud migration with the lowest

total cost of ownership.

In R81, CloudGuard Controller connects using API to the Kubernetes management master node and fetches

POD/Containers object names and IP addresses. Furthermore, this information is used to create and push

security access policies to the CloudGuard IaaS firewalls, to protect ingress and egress traffic from the worker

nodes2.

2 Consider limitations of an Island mode (pods are NATed behind the Node IP address)

26

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

Figure 19 Kubernetes objects for dynamic policies

East-West

When East-West traffic protection in the public clouds and container environments is needed, typically native

controls are used. However, if a complete traffic inspection is required, traffic from inside the node (between

pods) should be redirected to a security gateway. Such an approach highly depends on the environment (used

platform).

Network policy in a Kubernetes is a specification of how groups of Pods are allowed to communicate with each

other and with other network endpoints. NetworkPolicy resources use labels to select Pods and define rules

which specify what traffic is allowed to the selected Pods.

It provides required network access controls. However, this configuration is done by the YAML files, which

means:

 It is hard to manage

 Prone to errors

 Lacks easy visibility of the whole picture.

It is much more effective to use a special security console providing a user-friendly interface to manage rules

in a familiar way and translate this policy into the native one.

27

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

Figure 20 Security rules

The diagram below shows the recommended architecture reference for general secure network access control

implementation in the K8s environments:

VMware NSX-T North/South and East/West Security

Kubernetes is a popular open-source container orchestration platform. Many cloud providers offer Kubernetes

as a managed service, providing advanced features to businesses (Amazon Fargate on EKS/ECS, Azure

Kubernetes Services, Google Kubernetes Engine, and more)

VMware also brings extended features with the integration between NSX-T Data Center and Kubernetes, as

well as between NSX-T Data Center and Pivotal Cloud Foundry (PCF).

NSX-T provides a Service Insertion mechanism, which allows applying third-party services to North-South

traffic as well as East-West traffic that passes through a router. Configuring the T0 router to redirect traffic to

the CloudGuard IaaS enables implementation of thorough traffic inspection including IPS and Application

Control with centralized security policy management across the organization.

28

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

Figure 21 VMware NSX-T redirects intra-pod traffic to the CloudGuard IaaS

This allows North-South traffic inspection as well as East-West. Even traffic between pods f1 and f2 from the

same (Finance) namespace is inspected with the Check Point security gateway. And with all this going on,

CloudGuard IaaS can enforce k8s aware policies based on security tags/labels, which makes it efficient even

in the rapidly changing environments.

Web Application and API Protection (WAAP)

Instead of decrypting traffic on the external load balancer, in Kubernetes environments, the agent can be

installed as an Nginx Ingress controller, which will do the encryption and provide additional security protection.

The agent protects all incoming traffic similar to an API Gateway (or right after the API Gateway) immediately

before the nodes and pods in the cluster.

CloudGuard WAAP (Web Application and API Protection) is used to secure an organization's web applications.

It does this by analyzing web transactions using a set of AI engines working in unison. CloudGuard WAAP

protects against sophisticated attacks.

29

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

Figure 22 WAAP Dashboard

There are multiple ways of installing the WAAP agent:

 On the existing Nginx Web Server

 As a Container

 As an Nginx Ingress controller on a Kubernetes

 As a dedicated agent (reverse proxy VM) running on different cloud environments/VMware

CloudGuard WAAP has three major security components: Web application protection (WAF), API

security, and Bot protection:

 Web Application Protection: OWASP Top 10 and Advanced Attacks

 API Security: Schema Validation

 Bot Protection: Distinguishes Humans from Bots

CloudGuard Posture Management

CloudGuard Dome9 is an innovative service that allows enterprises to efficiently manage the security and

compliance of their Kubernetes and public cloud environments at any scale across Amazon Web Services

(AWS), Microsoft Azure, and the Google Cloud Platform (GCP). CloudGuard Dome9 offers technologies to

visualize and assess security posture, detect misconfigurations, model and actively enforce gold standard

policies, protect against attacks and insider threats, provide cloud security intelligence for cloud intrusion

detection, and comply with regulatory requirements and best practices.

Dome9 is 100% API driven – connecting to native cloud provider APIs, agentless, with infrastructure-free

architecture. It supports all three major clouds – AWS, Microsoft Azure and Google Cloud Platform (GCP), as

well as Kubernetes.

 Two modes of operation – read-only and manage.

 Read-only will monitor cloud accounts for changes and provide alerts – useful for Proof of Concept
deployments on production environments.

 Manage security groups for all clouds from a single point.

 Provide tamper protection on security groups.

30

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

Figure 23 Dome9 dashboard

There are several frameworks to start addressing k8s misconfigurations. In particular:

CIS Benchmarks for Kubernetes – CIS has worked with the community since 2017 to publish a benchmark

for Kubernetes. This benchmark is very prescriptive and provides very detailed risk and remediation details

regarding the most significant security requirements broken down into the following domains: Master Node

Security Configuration (Scheduler, Controller Manager, Configuration Files, etcd, PodSecurityPolicies),

Worker Node Security Configuration (Kubelet,Configuration Files).

NIST 800-190 Application Container Security Guide – NIST special publication dedicated to Containers,

provides high level details regarding the security risks involved with containerized apps and the effective

security measures necessary to mitigate these risks. This is a great framework that is relevant for any

company(not only federal government) that uses containerized applications. It Covers the following areas:

Image Risks, Registry Risks, Orchestrator Risks, Container RIsks, Host OS Risks.

Figure 24 Dome 9 rulesets for Kubernetes

https://www.cisecurity.org/benchmark/kubernetes/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf

31

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

Log.ic

CloudGuard Log.ic delivers advanced cloud intelligence and simplified visualization for faster and more

efficient incident response, augmented through AI and ML, across multi-cloud environments and Kubernetes

on-prem installations.

 Cloud security intelligence and security analytics, delivering enhanced cloud security processes
and decisions with contextualized visualization, intuitive querying, intrusion alerts, and notifications
of policy violations.

 Real-time cloud security monitoring and protection, troubleshooting, and security posture
awareness for ephemeral assets from Amazon AWS, Google Cloud Platform (GCP), and Azure.

 Simplified threat hunting, data analysis, and forensics, adding real-time contextualized insights into
threats and risk levels.

 Automated Detection and remediation of vulnerabilities, anomalies, and security threats in multi-
cloud environments.

 Seamless SIEM integration for contextualized and more actionable insights.

 Advanced Threat Prevention: Detect anomalies, alert, and quarantine threats, while utilizing cloud
security analytics, threat intelligence feed, and encryption.

CloudGuard Log.ic takes traffic logs and enriches the data with threat cloud IOC information and other types

of enrichment. It provides users with the ability to visualize the data flows and run GSL queries for immediate

incident response and threat hunting purposes.

 Consume CloudTrail and VPC Flow Logs to provide an augmented view of your AWS cloud
security.

 Visualize and analyze network activity and traffic into and out of your cloud environment.

 Near real-time view of events.

Figure 25 Visualize network activity

You may visualize your Cloud Network Policy, run in detect mode to automatically generate the appropriate

Network Policy based on existing traffic, and also edit the policy directly from the dashboard.

 Clarity provides a pictorial view of cloud network environments.

 Trace traffic flow between points.

32

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

 Effective View provides aggregated (effective) policy display of instances assigned to any given
virtual network.

 Get contextual information about cloud objects.

 Create, edit, and manage network security groups from a single location across clouds.

 Tamper Protection prevents unauthorized security group changes.

 Region Lock adds new security groups to Dome9 in Full Protection mode and ensures all inbound
and outbound rules will be cleared.

Admission Control

Kubernetes offers an “admission control plug-in” which is a piece of code that intercepts requests to the

Kubernetes API server prior to the persistence of the object, but after the request is authenticated and

authorized. This is an important way to expand Kubernetes security mechanisms.

For instance, many important features in Kubernetes rely on proper labeling. However, by default, any admin

with permissions to assign labels may choose any of them. This means that even very strict policy (for example,

when using third party solutions with extended network policies like Calico) becomes useless if everybody can

assign a label like “AllowInternetAccess”, granting such access to their pods. Eventually, access to other

services (like finance) can be obtained by such mislabeling.

Check Point Admission Controller intercepts requests to the Kubernetes API server and provides a very

convenient way to extend a Dynamic Admission Control to improve security, enforce governance, and validate

configuration changes.

Below are some examples:

 Does not allow users to run pods without network policy;

 Limits the list of labels available for admins/roles;

 Specifies namespaces in which an admin can create/manipulate objects;

 Detects and prevents unusual behavior of the admin (for example, if he/she tries to run too many
containers per hour);

 Verifies if the starting pod was created from the image verified by the CI/CD process, from the
trusted repository, etc.

These rules can be written in a convenient way using GSL (a simple language used for writing compliance

rules in the Dome9).

Simple use case:

 Regular admin may use labels to control traffic within his/her namespace only.

 Only a security officer may assign labels granting Internet access to pods.

Vulnerability Assessment

Containers are usually built on top of images from public registries and with packages added from public

repositories. They can be intentionally compromised and replaced by hackers after hacking the registry. The

use of repositories (RPMs and other dependencies) may also not be safe.

Required features:

 CI/CD Integration to prevent deployment of containers with known vulnerabilities, bad code, etc.

 Image scanning at runtime to alert regarding containers with newly discovered vulnerabilities (after
deployment)

Workload Protection

CloudGuard Workload Protection offers automated security for different workloads, in particular AWS Lambda

functions and Kubernetes. It provides seamless vulnerability assessment and creates deep code flow analysis

and behavioral profiles in runtime for unmatched protection – with a minimal performance impact.

33

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

Main principles:

 Observability: Continuously scans functions, to increase security posture - providing observability,
and continuous assessment.

 Least Privilege Protection: Maximizes workload security through automatic least privilege
protection for functions, logs, and databases.

 Threat Prevention: Zero-touch serverless application security using pattern matching, whitelisting,
blacklisting; mostly applied at the function level for threat prevention.

Serverless Runtime Protection3

Runtime protection can identify misbehaving containers and either alert on or kill them.

It allows the study of newly created deployments to build a safe baseline for your pods, and alert on or kill pods

which stray from the baseline.

Applicable to serverless applications (Java, Node, Python, C Sharp). In particular:

 Workload Agnostic Application-level Firewall

Scan inputs and outputs for functions for malicious data patterns such as SQL and Code

injections, and other OWASP Top-10 Risks.

 Cloud-Application Distributed Security Monitoring

Observe and report sensitive behaviors such as cloud resource access, network access, and

process and file access.

 Automated Micro-segmentation Enforcement

A backend learns necessary function behavior by combining code-flow analysis and runtime

monitoring and enforces these policies.

 Organizational Zero-Trust Policy Enforcement

Beyond the automated micro-segmentation, it also enforces policies that are overlaid by the

security organization to prevent application risk.

Figure 26 Serverless protection

3 In Q3 2020 mostly applicable to AWS.

34

CLOUD TRANSFORMATION - CLOUD-NATIVE SECURITY

CONCLUSION

We designed this paper with a view that it would inform our audience on what a cloud-native environment

might look like, the various components and the security implications.

Through our consultancy services,4 we can attest to the real-world requirement to be “cloud-native” as much

as possible. However, we also realize the potential security pitfalls and challenges, clearly, as the technology

running our workload changes, so should our approach to security, that is why understanding the concepts of

container story, CSPM and CNAPP are so important.

To conclude, as the digital transform expedites the shift to cloud, where the desired sate is cloud-native, the

Check Point platforms and tools exist to secure the journey.

4 https://www.checkpoint.com/downloads/products/checkpoint-cloud-transformation-security-consultancy.pdf

CONTACT US

Worldwide | 5 67897, Israel | 972-3-753-4555 | 972-3-624-1100 | info@checkpoint.com U.S.

 | 959 300, 94070 | 800-429-4391; 650-628-2117 | 650-654-4233 | www.checkpoint.com

https://www.checkpoint.com/downloads/products/checkpoint-cloud-transformation-security-consultancy.pdf
mailto:info@checkpoint.com
http://www.checkpoint.com/

