
WHAT'S VULNERABILITY RESEARCH?

WHAT IS VULNERABILITY RESEARCH | 2

Introduction
On my deathbed, I’m pretty sure that for an instant I will recall the first time I got to attend the Chaos
Communication Congress.

CCC takes place every year in Germany, from December 27th to the 30th, and it is one of the largest information
security conferences in the world; even back then, the number of attendees exceeded ten thousand. This was
back in the old normal, when people were excited to catch airplanes and gather in large crowds. Shortly after
landing in Hamburg I was awestruck by the snow and the distinct holiday spirit, but even that did nothing to
prepare me for arriving at the actual venue and seeing for myself what CCC was.

The convention center in Hamburg is somewhat tricky to navigate on a usual
day. When CCC took over the place, the entire building would be cast
into darkness, and as you’d wander around lost you’d be assaulted on
all sides by colorful blinking lights and rugged, individual technical
enterprise. On your left, someone’s built a human-size copy of Tetris
out of cubic LEDs. On your right, someone’s running a lockpicking
workshop. Above you a 3D- printed drone flies around in a circle while
the person who printed the thing considers how much effort would
be required to make it automatically mix milkshakes and deliver them
to random conference participants. You crash on a sofa and to your left
is some person who hasn’t slept in 50 hours, who’s had their third bottle
of Club Mate, their caffeine-powered fingers typing furiously at their laptop
keyboard and producing a gigantic blob of hexadecimal output. Above the two of
you hangs a large handmade banner that proclaims, “Be Excellent to Each Other!”.

WHO IS THIS ARTICLE FOR?
Anyone with at least a passing interest in the field of vulnerability research
who’s taken aback by the cloud of terms to memorize, processes to follow
and names to know. No prior technical knowledge is required. This article
doesn’t teach actual vulnerability research past the very basics of the basics;
if you’re looking for a text that does, go read our own “A First Introduction to
Systems Exploitation”.

WHAT IS VULNERABILITY RESEARCH | 3

I spent the first day trying to take in all of that.
Later, when I desperately tried to describe to my
wife where I was and what I had seen, the best
I could do was compare it to Harry Potter’s culture
shock when he visits Diagon Alley for the first
time and finally sees first-hand all these wizards
practicing their wizardry (the usual biting retort to
such comparisons goes, “Read Another Book”).
She said “ok, cool”, and I felt that somehow a
lot of the experience had been lost in transmission.
But anyone who has actually been to CCC
will understand.

Since then, I’ve spent a long decade getting to know
this world that I first visited in Hamburg. I’ve heard
plenty of amazing and unlikely research shared
by the Cryptographers, the Reverse Engineers,
the Threat Intelligence people and the Hardware
Hackers—but the most alluring and difficult part
has been understanding the world of vulnerability
researchers. The problems they deal with are of
the most difficult and adversarial found anywhere
in information security; their work is probably the
most emblematic of the field, and the likeliest to
reach the average person via the evening news.

I wish I’d had someone explain it all to me right
then and there, and hopefully the next person in
my shoes will run across this article and find it to
suit their need. But before we jump into all the talk
about one-days and cross-site reference forgeries
and whatnot, I first wanted to bring up CCC, and that
banner that says “be excellent to each other”. They
may not be the most technical or edgy aspect of
information security or vulnerability research, but
they’re why I care enough to have written this.

Our Preemptive
Apology
This article mentions by name many researchers,
vulnerabilities, terms, concepts and legal entities.
If we have misunderstood some piece of history,
misattributed an achievement, failed to give due
credit, incorrectly characterized a person or a
company—our deep apologies, and please contact
us so we can fix what needs fixing.

THE PROBLEMS THEY DEAL WITH ARE OF
THE MOST DIFFICULT AND ADVERSARIAL

FOUND ANY WHERE IN INFORMATION SECURIT Y

WHAT IS VULNERABILITY RESEARCH | 4

“The word hack doesn't really have 69 different meanings”, according to
MIT hacker Phil Agre. “In fact, hack has only one meaning, an extremely
subtle and profound one which defies articulation. Which connotation
is implied by a given use of the word depends in similarly profound ways
on the context [..] Hacking might be characterized as ‘an appropriate
application of ingenuity’. Whether the result is a quick-and-dirty
patchwork job or a carefully crafted work of art, you have to admire
the cleverness that went into it."

That part of information security that your parents warned you about [..]
Systems are understood in terms of naked primitives; convenient
abstractions are stripped away, or are unavailable to begin with.
The narrative about how the system is "supposed to" behave is ignored
with prejudice. These systems are then understood in more detail than
before, and may even be made to behave in ways that they shouldn't.

What is Vulnerability Research?
There’s a different answer in theory and in practice.

In theory, vulnerability research is the capital-A Art of understanding systems so thoroughly that it becomes
possible to craft unexpected input that makes them behave in unexpected, typically disastrous, ways. Our own
“A First Introduction to Systems Exploitation”, mentioned above, has the following to say:

The eminent Jargon File puts it more bluntly:

WHAT IS VULNERABILITY RESEARCH | 5

But also provides the following story, which we really feel is the quintessential definition of "hack" by example:

[..] One day an MIT hacker was in a motorcycle accident and broke his leg. He had to
stay in the hospital quite a while, and got restless because he couldn't hack. Two of his
friends therefore took a terminal and a modem for it to the hospital, so that he could
use the computer by telephone from his hospital bed. Now this happened some years
before the spread of home computers, and computer terminals were not a familiar sight
to the average person. When the two friends got to the hospital, a guard stopped them
and asked what they were carrying. They explained that they wanted to take a computer
terminal to their friend who was a patient.

The guard got out his list of things that patients were permitted to have in their rooms:
TV, radio, electric razor, typewriter, tape player, ... no computer terminals. Computer
terminals weren't on the list, so the guard wouldn't let it in. Rules are rules, you know.
[..] Fair enough, said the two friends, and they left again. They were frustrated, of
course, because they knew that the terminal was as harmless as a TV or anything else
on the list... which gave them an idea.

The next day they returned, and the same thing happened:
a guard stopped them and asked what they were
carrying. They said: “This is a TV typewriter!”
The guard was skeptical, so they plugged it in
and demonstrated it. “See? You just type on the
keyboard and what you type shows up on the TV
screen.” Now the guard didn't stop to think about
how utterly useless a typewriter would be that
didn't produce any paper copies of what you typed;
but this was clearly a TV typewriter, no doubt
about it. So he checked his list: “A TV is all right,
a typewriter is all right ... okay, take it on in!"

WHAT IS VULNERABILITY RESEARCH | 6

So, that’s theory. Practice is, predictably, grittier.
The discovery of a high-impact vulnerability can
equal money, power, prestige or the satisfaction
of averting future disaster. Hence, for every
undiscovered such vulnerability, there is an implicit
wacky race of highly motivated freelancers,
nation-state actors, security researchers at big
tech, graduate students and other players, each
armed with their respective tools, expertise and
preponderance of free time, all vying to be first
past the post. For these actors, there are few things
more satisfying than finding a vulnerability with
wide reach and crippling impact (in these modern
days, one might add: wide enough reach and
crippling enough impact to warrant a catchy name,
a dedicated web page and an imposing logo). This
diverse supply of vulnerabilities meets a diverse
demand: actors who have actual plans of what to
do with a vulnerability, including some (not all) of
the actors mentioned above, will happily pay for one
handsomely in lieu of doing the difficult research.

Nation-state actors of course qualify here;
ordinary cybercriminals mostly don’t, due to
pure cost- benefit considerations. After all, a
vulnerability unknown to the world at large—what’s
known as a “zero-day”, a term that originated at

“Warez” bulletin boards during the 1990s—might
net a godly initial conversion rate of victims;
but such vulnerabilities can easily go for hundreds
of thousands of dollars, a sum comparable to
the total yield of a highly successful ransomware
campaign spanning several months and even the
total monetary yield of the infamous 2017 Wannacry
outbreak. Consider: even that latter incident, widely
seen as the perfect storm and the contemporary
upper bound for the scale of commodity malware,
could not break the six- figure barrier. It’s very
difficult to imagine a visionary cybercriminal so
ambitious and so confident, planning a cyber-heist
on such an unprecedented scale, that would take
the risk and eat the upfront investment to power
their campaign with a zero-day vulnerability. Much
easier to stick to malicious spam, which is reliable
and affordable even if you’re some broke nobody in
Nigeria. Even Wannacry was able to wreak all
the havoc it did by exploiting a mere “one-day”
(an already widely-known vulnerability) in Microsoft
SMB, a patch for which had been available for a
full two months before the attack. If you’re targeting
indiscriminately, why pay an exorbitant amount
for artisanal secret research when you can just
play a numbers’ game and count on enough
victims to click “enable macros” or not click
“update and restart”?

WHAT IS VULNERABILITY RESEARCH | 7

While a zero-day vulnerability can fetch a pretty
penny being sold to whatever interested party, there
are arguably ethical issues with that. Suppose Alice
finds a vulnerability, and just goes to the dark web
and sells this new-found weapon to the highest
bidder, Bob, without expressing any interest in what
kind of enemies Bob has made that put him in need
of such a weapon, and what he intends to do to
these enemies once he properly takes aim with it.
If Bob is a dictatorial despot in some seventh-world
country, and his intended use for Alice’s discovery
is to track, capture and
torture dissidents and
pesky journalists, some
would argue that Alice
does not come out of this
as quite the paragon of
virtue. If that bothers her,
she can instead disclose
her discovery to the
owner of the vulnerable
technology, through
proper channels, following
rigorous protocols designed
to ensure that by the time
the vulnerability is made
public, a working patch that fixes the vulnerability
in the offending technology is already available.
Crucially, companies (more typically tech giants)
have recognized that Alice has perverse incentives

here, and that to serve the greater good she
must forego an obscene amount of money;
recognizing that many among us aren’t quite
that saintly, these companies have set up “Bug
Bounty” programs that try to offer competitive
compensation for coordinated disclosure of
vulnerabilities. For instance, Microsoft offers
a bounty of up to $250,000 for “critical remote
code execution, information disclosure and
denial of services vulnerabilities in Hyper-V”,
its hypervisor product.

There is also a “gray market” for vulnerabilities:
some actors with visible websites, physical
addresses, real names, and other such signifiers of
above-board conduct will pay Alice for her discovery
conditional on no public disclosure, and her trust
in their judgement of who to sell this information
on to and when. One such actor is Zerodium,
founded in 2015 by the members of a now-defunct
French infosec firm called Vupen Security, which
specialized in discovering vulnerabilities and selling
them to law enforcement and intelligence agencies.
The client pitch at the Zerodium website reads,
“access to [our] solutions and capabilities is highly
restricted and is only available to a very limited
number of eligible organizations”.

WHAT IS VULNERABILITY RESEARCH | 8

Severity of a
Vulnerability
MITRE is a US-based nonprofit that dates back
all the way to 1958 (“MITRE” does not stand for
anything). Initially involved with applications of
early computing technology to military and civil
engineering projects, MITRE soon expanded
to develop advanced communication and early
warning systems (there’s also that research paper
about natural eradication of cannabis in the western
sphere of influence via biological warfare; not very
representative of MITRE’s general work, but we
can’t not mention this). In 1999, MITRE launched
the Common Vulnerabilities and Exposures (CVE)
glossary—a database that records publicly-
known vulnerabilities, and has become a de-facto
canonical reference. The vulnerability exploited in

2017 by the aforementioned Wannacry malware to
create a rampant cyber pandemic and cause untold
amount of damage is catalogued there by the dry,
detached designation “CVE-2017-0144”, ala The SCP
Foundation. The database has recorded 12,174
new vulnerabilities in 2019 alone (For comparison,
the early 2000s saw about 1,500 new vulnerabilities
per year, and the early 2010s—about 5,000).
Vulnerabilities are ranked for severity by the
0-to-10 Common Vulnerability Scoring System
(CVSS), which assigns each vulnerability a score
based on various properties. The current version
of the scale, CVSS 3.1, computes a score based on
the following questions:

MITRE IS A US-BASED NONPROFIT THAT
DATES BACK ALL THE WAY TO 1958

WHAT IS VULNERABILITY RESEARCH | 9

Are there any special circumstances that
should change our assessment, beyond
these dry details? e.g. if the component
under question is compromised, can
this easily lead to a proper catastrophe,
casualties, social unrest or other cruel
and unusual damage?

How feasible is the attack vector? Can you
launch the attack from halfway across the
earth, or do you need to be in the same LAN
as the victim? Or do you need to be literally
running code on the victim machine, or even
to have physical access?

How complex is carrying out the attack in
practice? Can you just run a piece of code
and expect immediate success, “script
kiddie” style, or would you need to study
your target carefully, make individual
preparations and hope you get lucky?

What privileges are required up-front?
Can you launch the attack as an anonymous
nobody, or do you require at least a working
user account or some such? Or do you need
to have administrator privileges, which
are even further abused beyond what the
system’s design intended?

Is user interaction required? Does the
victim have to click “ok” on some prompt or
do they get, as the phrase goes, “pwned”,
without even that opportunity?

Can the scope of the impact grow to include
systems that weren’t directly attacked?
For example, a compromised SQL server
that can be trivially used to compromise
other SQL servers, or a compromised
website that can be trivially used to execute
malicious scripts on the browsers of
unsuspecting visitors.

How impacted are the Confidentiality,
Integrity and Availability of the targeted
system? Can the attacker tamper with
information, learn secrets, and/or
disrupt services? For each such ability,
is it constrained or does the attacker
have free reign?

How about a working exploit? Is it even
proven to exist? If so, is it just a Proof of
Concept that allegedly worked once in
someone’s lab, or is there a mature exploit
that will work most of the time—or even
a complete proliferation of a reliable and
easy to use automated exploit tool?

How thoroughly has the vulnerability been
remediated? Is there an official patch that
resolves the issue? Maybe just a temporary
band-aid, issued by the targeted technology’s
vendor to be used while the official patch
is being worked on? Or maybe even just an
unofficial workaround that those in the know
can apply? Or, in the worst case scenario,
no remediation at all?

To what degree does the compromised
component have the ability to propagate
further into the environment?

How confident are we that the vulnerability
exists at all? Do we know its root cause
and the mechanism behind it? Are we fairly
certain that the vulnerable behavior can
be reproduced? Has the relevant vendor
confirmed it?

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

WHAT IS VULNERABILITY RESEARCH | 10

Some of these questions are intrinsic to the
vulnerability, and the answers to them will remain
the same throughout its lifetime; others will evolve
as time passes. The answers can be represented as
a terse string called a CVSS vector and aggregated
into an overall score, based on a well-defined
standard numerical scale. For instance, the
aforementioned CVE-2017-0144 has the vector
CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H,
and an overall score of 8.1 out of 10 (this calculator
delves in-depth to how these map to answers to
the questions above).

Lifecycle of a
Vulnerability
How many critical vulnerabilities are out there right
now, as we speak, waiting to be discovered? Given
the growing rate at which new ones are found, some
of which astoundingly simple in concept and ease
of exploitation (see e.g. ShellShock below), it is

easy to imagine a seething, unknown underworld
of undiscovered vulnerabilities—a mass of dark
matter that we can only have a fleeting experience
of when a piece of it comes to light. Chances are,
there are many possible sequences of bytes
that could each compromise every Windows 10
machine in existence, and the world can only
operate in a sane way by virtue of bliss ignorance.
Of most vulnerabilities, no one knows and no one
will ever know.

Out of those many, many possible vulnerabilities,
one will—against all odds—be teased out by the
investigative glare of a researcher (we’re sure
there’s a tortured metaphor about the beginning
of life somewhere in there). A researcher sets their
sights on an application to be analyzed because
it’s popular, or has a particularly high impact if
compromised, or they suspect the code’s security
standard is not quite up to par, or just because it
seems interesting to the researcher personally.
They observe the application’s source code—or,
if they lack access to it, the raw assembly.

894 1020
1677 2156

1527
2451

4935

6610 6520
5632 5736

4652 4155
5297 5191

7946

6484 6447

14714

16556

12174

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

VULNERABILITIES BY YEAR

WHAT IS VULNERABILITY RESEARCH | 11

The old-school way to proceed is to look for
places where the program is exposed to input,
manually understand the code that processes this
input and then reason about the way that this code
might malfunction. In recent years, the paradigm
of “fuzzing” saw a great increase in popularity—
automated tools, such as AFL, will spam the
targeted application with a great amount of
pseudo-random input, note when some input
causes the program to behave in a different or
interesting way, and then use that input as a
starting point when generating even more input,
basically using a genetic algorithm that is reaching
for some truly pathological edge case that no
human would have thought of, hopefully crashing
the program and indicating a bug that can be
looked into further.

With the concrete lead of a crash in hand, the
researcher can then proceed to reason about the
code at fault and understand the root cause of the
crash (the answer is typically one of the items in the
section below, “Causes and Effects”). To properly
appreciate the strength of fuzzing as a paradigm,
we recommend reading the article 50 CVEs in 50
Days, where the authors “took one of the most
common Windows fuzzing frameworks, WinAFL,
and aimed it at Adobe Reader, which is one of the
most popular software products in the world [..]”
and “[found] over 50 new vulnerabilities in Adobe
Reader [..] [which is] 1 vulnerability per day—not
quite the usual pace for this kind of research.”

Once a bug is found and understood, there is
sometimes still a way to go until a fully-fledged
vulnerability, and a way from there to a working
exploit. The researcher must understand the
degree to which they control the terms on which
the application malfunctions, and how these can
be used to manipulate it. These considerations
are usually straightforward when dealing with
injections, request forgeries and other types of
vulnerabilities some levels of abstraction above raw
assembly; but when dealing with the raw assembly,
a researcher will typically have to answer difficult
questions such as “what can I write? Where? What
constraints are there on my input—do I have to
avoid null bytes, or even non-printable characters
altogether? Is there somewhere I can write some
assembly, and make the program transfer control
to it?”. This whole chain of questions is usually
relevant when aiming for full arbitrary code
execution, but even a lesser vulnerability will
typically require a researcher to deal with at least
some of these considerations. Even when they do,
their work is not done: as a rule, applications are
expecting to be attacked, and mitigations will be
in place. “Canaries” may be placed at the end of
buffers, inducing programs to screech and die the
moment they are overwritten, rather than let an
attacker get away with a successful buffer overflow
(more about this below). Pieces of memory may
be marked as “non-executable” by the operating
system, preventing the attacker from a simple
“write code, then jump to it” (this mitigation is

ONCE A BUG IS FOUND AND UNDERSTOOD,
THERE IS SOMETIMES STILL A WAY TO GO
UNTIL A FULLY-FLEDGED VULNERABILIT Y

WHAT IS VULNERABILITY RESEARCH | 12

called Executable-space Protection, though the
Windows-specific term, Data Execution Prevention
(DEP), is better known). This forces them to
creatively use machine code that’s already in place
and meant to be executed (the most widely-known
method of doing this is called ROP—Return Oriented
Programming), but then the OS, wise to this trick,
randomizes the position of process code in memory,
forcing the attacker to figure that unknown out
before they can even get to their attack proper.
Once the attack is executed, instead of the promised
land of endless privileges, the attacker might find
themselves in a Sandbox—a restricted environment
with few privileges, or even a Docker container or
a Virtual Machine. They will have to “escape” this
environment before they can proceed. Each way of
getting around a mitigation they find leads to a new
mitigation, put in place to frustrate them; every new
such mitigation leads to more clever, elaborate and
unintuitive workarounds. It’s the sort of thing the
phrase “cat-and-mouse game” was invented for.
Eventually, the attacker may despair of their lead
as non-exploitable, but of course they root all the

while for the second possibility—that they triumph,
and emerge from their trials and tribulations with
a working exploit in hand.

When an exploitable vulnerability is first discovered
by a researcher, it is considered a “Zero Day”—
meaning there is no available patch for it, and
knowledge of it is limited to its discoverers and
possibly a small circle of other parties (again,
this term originated at “Warez” bulletin boards
during the 1990s, and referred originally to brand
new software, off the shelves of non- consenting
developers, available for download hours after its
official release). Once a patch is widely available,
the vulnerability becomes a “One Day”, and use
of it for exploitation hinges on whether the attacker
can strike before the defender applies the patch.
This is why Windows nags you so unrelentingly
to restart your machine and install your updates.
Apart from Zero-days and One-days, periodically
someone will try to assign meaning to a similar
term using some other number than Zero and One,
with varying degrees of success and intended irony.

WHAT IS VULNERABILITY RESEARCH | 13

Wikipedia off-handedly mentions a concept of
half-day vulnerabilities, where “few users are
aware and implementing [the] patches”. A security
vendor once famously touted its “Negative-day
protection”, which provoked sardonic tweets
wondering if the technology in question will mitigate
a vulnerability by automatically identifying the
researcher who discovered it and traveling back
in time to assassinate their grandfather.

Assuming the researcher in question escapes
such a fate, we’ve already discussed their options:
keeping the vulnerability to themselves, selling it
to an interested actor, or disclosing it to the affected
software vendor. If they pick one of the first two
options, this is where vulnerability research ends
and exploitation begins. Money may change hands
and unwitting targets may be compromised under
cover of darkness, until the vulnerability comes to
light and is patched—if and when that happens. The
third option is what’s commonly called “coordinated
disclosure” and, effectively, constitutes an entire
additional phase of the research. It is an involved,
protracted and sometimes exhausting legal tango,
with its prize typically being a monetary “bounty”
paid by the affected vendor, and the researcher
having bragging rights and being secure in the
knowledge that they did The Right ThingTM.

To be blunt, the above is putting an idealized
gloss over what is sometimes a nasty, adversarial
situation. Not all vendors see the value in
incentivizing researchers to poke around
products and look for vulnerabilities. Some will
fix the vulnerability, but will not offer monetary
compensation; some will shrug and refuse to fix
the vulnerability—effectively playing a game of
“chicken” with the researcher, the implicit threat
being “oh, you care so much about how this will
affect people? Go ahead, let’s see you disclose it
when we haven’t released a patch”. Finally, some
will even resort to legal threats—one vendor’s
CSO infamously went on a Twitter rant on this
subject in 2015, scolding the community thus:

Customers Should Not and Must Not
reverse engineer our code [..] it’s our
job to do that, we are pretty good at it.
[..] Many companies are screaming,
fainting, and throwing underwear at
security researchers to find problems
in their code and insisting that This Is
The Way, Walk In It [..] You can’t really
expect us to say ‘thank you for breaking
the license agreement.’

WHAT IS VULNERABILITY RESEARCH | 14

This tweet was later removed, but the sentiment
behind it lingers in the industry—so much so that
the “pwnie” awards, hosted annually at the Black
Hat conference, have a “Lamest Vendor Response”
category just for this sort of thing.

Let’s be optimistic, though, and assume that the
researcher has a cooperative dialogue partner
in the affected vendor (even if their cooperation
does not extend all the way to screaming and
underwear-throwing). The vendor will require
time to fully understand the vulnerability, and
then issue a response. The researcher is hoping
for an enthusiastic “oh god, we have to fix this
immediately”, but they aren’t always so lucky.
Sometimes vendors will require a fully working
exploit before taking a vulnerability seriously,
sometimes they will dismiss the vulnerability as
“out of scope” for their bug-hunting efforts, and
—as mentioned above—sometimes they will not
respond at all. This latter gambit used to be so
popular that eventually a standard emerged (often
credited to Google’s Project Zero; more on them
below) where researchers declare a generous time
window for the vendor to fix the vulnerability (a
reasonable figure is 90 days), after which they will
regretfully go public with their findings, patch or no
patch. This might cause damage in the short run,
but in the long run, it is the only deterrent against
a future where vulnerabilities accumulate without
end and vendors sweep them under the rug.

Hopefully, this process does end with the vendor
publishing a patch. At this point, the researcher
and vendor typically co-publish a disclosure of the
nature of the vulnerability, affected product version,
and the patch. The vulnerability turns into a “One
Day”, and so begins the rush of malicious actors
to exploit the vulnerability before victims manage
to patch their software. Some vendors enjoy the
privileged position of being able to patch customers’
software remotely and discreetly; for example,
such is the case with Microsoft. Once a month,
they release a bundle of patches that are silently
installed on every network-connected Windows
Machine with a functioning update mechanism.
Since this typically happens on the second Tuesday
of every month, it is colloquially known as “patch
Tuesday”. In these cases, the ability of malicious
actors to abuse One Days is mitigated somewhat.

ONCE A MONTH, THEY RELEASE A BUNDLE
OF PATCHES THAT ARE SILENTLY INSTALLED ON

EVERY NETWORK-CONNECTED WINDOWS MACHINE
WITH A FUNCTIONING UPDATE MECHANISM.

WHAT IS VULNERABILITY RESEARCH | 15

Causes and Effects
All the above is good and fine, but how does a vulnerability work? Some input is
crafted that makes a music player or a website gag, writhe and behave in a way
its developer never anticipated—how can such a thing happen? While this is not a
technical document, we would be remiss not to introduce you to the terminology,
and what it means, especially since often the underlying principle is simpler than
it seems at first. This is by no means an exhaustive list, but it includes many of the
recurring themes in vulnerability root causes and impacts. We will try to explain
each term shortly and succinctly.

Causes: How an exploit becomes possible

Buffer Overflow
In French, this attack is called Dépassement de Tampon. We just felt like we should
open with that.

A process often needs a chunk of memory, a “buffer”, for some purpose, and later
writes to it. Suppose an attacker can control the data to be written and the length of the
data is not verified, or verified incorrectly; the attacker can then craft data longer than
the buffer length that when written to the buffer, will overwrite process memory that
follows the buffer, which the attacker was not meant to access originally. e.g. Alice is
very thirsty and asks Mallory “do you have the time?”. In a moment she will be thinking
to herself, Mallory just said the time is _ _ : _ _ . I’m very thirsty,
with Mallory’s answer meant to overwrite the blank. Mallory responds, 12:47. I am
not. This overwrites the blank and some characters that follow it. Now Alice is thinking
Mallory just said that time is 12:47. I am not thirsty, and soon dies
of dehydration.

Integer Overflow
A process keeps track of some quantity, which an attacker can add to. The attacker
makes the quantity grow and grow, until finally the underlying memory literally runs
out of ways to represent a larger number. The CPU carries out the addition anyway,
because in certain situations, this is useful to do and produces a result that makes sense.
Not this specific situation, though. Now the process is convinced that some shopping
cart contains a negative two billion apples.

WHAT IS VULNERABILITY RESEARCH | 16

Use After Free (UAF) and Misc Memory Management
A process is responsible for keeping track of what memory it is using, where, and
what for. It may mistakenly declare itself done with some memory, then a moment
later try to use that memory as if there’s something useful still there. An attacker might
have intervened in the meantime, requested the unused memory and written into it,
with unexpected results. e.g. Alice throws away her old grocery list. A week later, she
makes a mistake and forgets about this, and goes looking for the old grocery list again
in order to have it scanned by her online shopping app. She finds the list in the garbage
bin outside, where Mallory had found it a day before and added two tons of creamed
corn to it, to be delivered to Alice’s doorstep. Alice has her app scan the list, and is soon
set back some $10,000 and a hefty fine for domestic disturbance.

UAF is one kind out of
a larger class of such
“memory management”
errors: A process can
also declare itself done
with memory that it had declared itself done with already (Double Free), or try to ask for
some memory, get the response “memory allocation failed” and then say “great! Please
write this-and-that content to ‘Memory Allocation Failed’” (Null Dereference). This last
one has had such destructive consequences over the years that Computer Scientist Tony
Hoare, who had worked on the ALGOL programming language during the 1960s, outright
apologized in 2009 for bringing null references into the world:

Type Confusion
A process is responsible for interpreting bits in memory—does this sequence of bits
represent a number, a list, an internet connection? If the process can be tricked into
treating a blob of bits as one thing one moment, and another thing the next, funny things
can happen. e.g. Alice is very scatter-brained. Mallory calls her and says “hey, can you
please open that list you’ve been keeping on your phone of people and the number of
times they’ve said the word ‘Longitude’ – the one that says ‘phone book’ on the icon. I
just heard your husband say it today.” Alice duly increments the number by 1, and the
next time her husband calls, she innocently asks “hi, who’s this”. This is the last straw
for an already strained relationship, and it ultimately snowballs into a long, ugly divorce.

WHAT IS VULNERABILITY RESEARCH | 17

Injection
A process is responsible for keeping its own internal logic separate from user input.
If this separation fails, an attacker can craft input that gets evaluated as if it were
process internal logic. An easy, extreme example of this is a ‘greet’ script that asks for
the user’s name, transplants it into the command print("Hi, {name}!") and executes
the resulting command. An attacker can answer that their name is Bob"); delete _

hard _ drive(); // (where // means “ignore rest of line”). The server will execute
the command print("Hi, Bob"); delete _ hard _ drive(); //!"), certainly
not functionality originally intended by the script’s original author. A related concept
is a “path traversal” attack, where e.g. Mallory gets to pick a file name for saving a
new picture in /home/Mallory/Pictures, and she picks ../../../important _

scripts/script.sh and thus gets to overwrite its contents, which clearly no one
intended. Another related concept is the Cross-Site Scripting (XSS) attack; the simplest
variant of it basically involves some innocent printname.html webpage that executes
print("Hi, {name}!") and gets blindsided by a smartalec attacker who’s wandering
the web and distributing links to printname.html?name='Bob"); delete _ hard _

drive(); //'. To mitigate this issue, many applications implement “input sanitization”
and reject suspicious input, or create a more delineated divide between pre- compiled
main logic and the input that it processes (if you’ve ever wondered why Python’s
subprocess module won’t let you call("echo hello"), but insists on either the
safer, idiomatic call(["echo","hello"]) or the “we hope you know what you’re doing”
override, call("echo hello", shell=True)—this is the reason).

Cache Poisoning
Some processes act as servers; clients send requests their way, and they respond.
Many of the requests repeat, and so these servers keep a cache of recent Frequently
Asked Questions. If these servers compute answers completely on their own, without
dependence on outside input, that’s that; but if they do depend on outside input in some
way, and are too trusting of it, an attacker can manipulate this input at just the right
time, changing the “official answer” in the FAQ for hours, days or weeks until the server
thinks to do another reality check. A famous attack of this type was what’s called “ARP
poisoning”, where an attacker would spam the local network with declarations that their
machine is the network’s default gateway, causing all traffic to be routed through them.
This specific attack carries much less weight today, in a world that is wary of it and has
gone extremely wireless. Someone can probably listen in on your traffic, anyway, and
not using an encrypted connection is unjustifiable negligence (ask the Wall of Sheep folk
about this). But the more general principle of cache poisoning is still relevant.

WHAT IS VULNERABILITY RESEARCH | 18

Flooding
Sometimes a system can withstand an attack, but not a million simultaneous copies of
that same attack. Suppose you’re in charge of an internet service and one day, without
warning, tens of millions of different machines across the globe begin bombarding
your servers with requests, the aggregate size total of which reaches 10 Wikipedias per
second. What do your servers do? Choke and die, that’s what. While flooding is most
synonymous with this sort of “denial of service” scenario, and in that capacity depends
more on an attacker’s control of many machines than on their access to esoteric
domain knowledge of the attacked system, one can make a case that e.g. the exploit
for CVE-2008-1447, explained below, involves a form of flooding (and, of course, be
promptly clubbed to death by linguistic prescriptivists).

Replay Attack
Sometimes a server should only perform some action after validating that the request
comes from a client with the proper credentials. If the protocol used for validation is
naive enough, someone listening in—or even someone with access to artifacts left over
after the interaction—can use what they’ve seen to impersonate someone who has the
proper credentials. The simplest example of this is the timeless scenario, found in many
a video game, of some location entrance blocked by a guard who demands to hear a
password; the player simply lurks around the scene for a while, and invariably someone
comes along and produces the password, which the player can then repeat to gain entry.
These attacks are typically mitigated by challenge- response schemes, randomization
and explicitly tying challenges to the responder’s identity. (One can imagine an ‘Infosec
Speakeasy’ skit, where the owner grabs a prospective customer and growls, “Stop
right there! What’s sha256(the password || your name || the current
timestamp)?”). The “Pass the Hash” attack against the NTLM Security protocol relies
on a similar principle; an attacker can authenticate as a user without access to their
sensitive and well-protected password, and instead “replay” a derived protocol artifact
(the hashed password) that is kept in store and was never meant to be used this way.
One can also say something similar about Session Hijacking and “Pass the Cookie”
attacks that steal and re- use the victim’s web browser cookies, but whereas the NTLM
bug was just a mistake, browser cookies work that way by design and are admittedly
very convenient.

WHAT IS VULNERABILITY RESEARCH | 19

Race Condition
Computation that happens in parallel (or accidentally in parallel!) is infamous for often
violating programmer assumptions about what happens first and what happens later,
and therefore being particularly difficult to debug and reason about (the joke goes:
“some people, when confronted with a problem, think ‘I know, I’ll use multithreading’.
Nwo tehy hvae two prbomles.”) But, whether we like it or not, we live in a parallel world;
a programmer cannot even assume that two adjacent assembly instructions generated
by their code will run one directly after the other, without meaningful events happening
in-between, unless they arrange for this guarantee carefully and explicitly. A classic flavor
of race condition is the Time of Check to Time of Use (TOCTOU) vulnerability, where the
system makes an access control decision based on a prompt that completely changes its
meaning by the time the decision is implemented. e.g. A server might naively execute the
following logic: does Mallory own this file? If so, then ok, open this file
and show her its contents; Mallory arranges for the file to be a shortcut to one of her
personal documents, and once the then is reached, quickly changes the shortcut to point to
the server’s master password database instead while the shortcut name remains the same.

Request Forgery
A process should use its privileges responsibly and not just
blindly pass on every request made to it by a less privileged
entity (be it a user, a document, or anything else). If the
process does not apply a sanity check of “does it make sense
for this entity to ask me to do this thing”, its negligence
can lead to an attacker tricking the process into applying
its authority in the attacker’s service. This is also called a
“confused deputy” attack, and its classic flavor is what’s
called a Cross-Site Request Forgery (CSRF) attack—where
e.g. Mallory’s personal webpage contains a surreptitious
request for the resource https://restaurant-review.
com/mallorys _ place/review.html?star _ rating=5; if a web browser blindly
agrees to make this request, anyone using it while logged into restaurant-review.com
who then visits Mallory’s website will be made to rate her restaurant 5 stars without even
knowing this happened. Nowadays, this attack is mitigated by a feature called “same-
origin policy”, which does not allow scripts running on a web page to read information
sent by a web page belonging to a different domain; so if restaurant-review.com
requires any meaningful interaction, and it typically will, Mallory’s plot is foiled. When this
general method is used to compromise servers, rather than clients, it’s called Server-Side
Request Forgery (SSRF); one prominent flavor of it is the XML External Entity attack, where
the server is fed a request referring to some XML resource and is made to evaluate it blindly
(similarly to how the web browser blindly evaluates the crafty request in Mallory’s website).

WHAT IS VULNERABILITY RESEARCH | 20

Semantic Bug
We would be in dereliction of our duty not to mention that some bugs are domain-
specific, inherent to design rather than implementation, cool and unusual. They
don’t fall into any of the specific categories above, and arise out of the very specific
circumstances of what the application in question is trying to do, and some subtle
way in which it is doing almost that thing, but not quite. Kaminsky’s DNS bug falls
under this category, as do Spectre, Meltdown, Curveball and undoubtedly many other
vulnerabilities with less pushy PR. Thanks to these, we have the joy of reading through
a long list of terse vulnerability descriptions: “buffer overflow… integer underflow…
SQL injection… buffer overflow… buffer overflow…” and then suddenly, “induced
mismatch between actual and interpolated pathfinding during initial learning phase,
leading to arbitrary duplication of coupons”. Don’t tell anyone, but these are
our favorites.

Effects: What impact a successful exploit has on the system

Privilege Escalation
An attacker acquires privileges that they did not have before, without being properly
vetted by the system (or by being “vetted” so easily that the original application design
obviously could have not and should have not intended for this to happen). Request
forgeries typically achieve a form of privilege escalation; for instance, the attacker
starts with mere access to the content displayed in a web page, and is able to leverage
this and induce the much more capable web browser to act on their behalf.

Information Disclosure
An entity acquires information that it should otherwise not be able to access.
For example, in the scenario described above for a “Race Condition” vulnerability,
Mallory is able to access the list of all user passwords, which she should not be able
to do. Heartbleed (CVE-2014-0160), expanded upon below, is a classic example of an
information disclosure vulnerability. An attacker exploiting it cannot run code on the
victim machine, but they can learn a great deal.

WHAT IS VULNERABILITY RESEARCH | 21

Arbitrary Code Execution
Probably the most severe possible consequence; the attacker owns the victim
application now and can have their way with it. This is different from what is achieved
by a command injection, where an attacker can merely run (e.g.) their choice of SQL; it
is the semantic equivalent of being able to log into the server and run an executable file
of your choice, with the same privileges as the compromised application. At this point,
the only thing preventing the attacker from outright owning the victim machine is the
possibly limited privileges of the compromised application. If that application happens to
have administrator privileges, that makes the attacker the machine’s new administrator.

Denial of Service
The attacker is able to knock a certain service offline and
render it unusable. All other things being equal, this attack
sits relatively low on the totem pole with respect to possible
impact and required sophistication—as mentioned above,
in the typical scenario, no esoteric domain knowledge of
the targeted system is required, no information is leaked
and attackers do not have their way with the system,
except insofar they force it to stop functioning. But in a
pathologically interconnected world where every functioning
company, institution and piece of infrastructure depends
on 270 others, and one ship stuck in a canal can cause
monetary damage on par with the GDP of a small country, a little denial of service can
go a long way.

WHAT IS VULNERABILITY RESEARCH | 22

Vulnerabilities of Note
We earlier talked about “motivated freelancers, nation-state actors, security researchers at big tech, graduate
students and other players, each armed with their respective tools, expertise and preponderance of free time”,
searching for vulnerabilities and hoping to hit the next big one. We may be able to get a more concrete grasp of
what this means if we look at some of the most high-profile vulnerabilities of recent years—their causes, and
some of the involved names and faces.

CVE-2019-6111

An improper input validation vulnerability in OpenSSH’s SCP client, which is used for file transfer over SSH
protocol. The implementation of SCP was based on an ancient unix program called rcp, which dates back to
1983; in the protocol used by rcp, the server gets to specify which files and directories are sent to the client.
So broadly speaking, all that’s standing between a malicious server and free reign to overwrite the victim
file system is the client’s vigilance when validating the server response—which turned out to be insufficient.
This vulnerability was discovered by Harry Sintonen, senior security consultant at security vendor F- Secure.
Sintonen has an adorable minimalist personal website which lists other vulnerabilities he’s found, such as
this header injection in the D-Link DGS-1250 network switch.

CVE-2019-0708 (“Bluekeep”)

A use-after-free bug in Microsoft’s Remote Desktop Protocol (RDP) implementation. This vulnerability allows
for remote code execution, and was considered to have potential to become a destructive “worm”—that is,
spread from one vulnerable system across the network to new victims, and repeat. The discovery of this
vulnerability was credited to the UK’s National Cyber Security Centre (NCSC), and its unusual nickname is
due to Kevin Beaumont, who at the time was a security operations centre manager at the Co-operative Group—
a British consumer co- operative with a diverse family of retail businesses including food, pharmaceuticals
insurance services and funeralcare. Beaumont nicknamed the vulnerability “BlueKeep” because “it’s about
as secure as the Red Keep in Game of Thrones, and often leads to a blue screen of death when exploited”.
Beaumont was chastised tongue-in-cheek for “naming a patched vulnerability someone else found”, and he
responded, “It’s so I don’t have to remember the CVE, I can’t handle numbers” (we can very definitely relate).
As of 2020 he’s become a senior threat intelligence analyst at Microsoft and runs DoublePulsar, a blog about
“Cybersecurity from the Trenches”.

WHAT IS VULNERABILITY RESEARCH | 23

CVE-2020-0601 (“Curveball”)

Well... imagine if entry into some high-security corporation required a reference from the CEO, but when giving
your reference you were also allowed to supply the CEO’s phone number that’d be used to verify your reference
with them personally, and on the way in no one bothered to cross-reference the number you supplied with the
internal company records. This vulnerability is kind of like that, except the phone number is the parameters for
some tough nut called the discrete logarithm problem—the difficulty of which your operating system ultimately
relies on when verifying that webpages and applications were in fact authored by, say, Google, and not some guy
in a Google suit. This vulnerability was discovered by an unsung hero at the NSA and then later disclosed (some
information security folks sardonically noted that this may be the highest possible accolade for a vulnerability’s
destructive potential—enough for the NSA to eventually say “we’re not keeping that thing a secret anymore").

CVE-2020-1350 (“SIGRed”)

An integer overflow bug in Microsoft DNS server that allows attackers to use malformed DNS response packets
to run arbitrary code on the target machine. This vulnerability was the subject of a Department of Homeland
Security emergency directive, instructing all government agencies to deploy patches or mitigations for it in 24
hours. It was discovered by Sagi Tzadik, a security researcher at Check Point. Scroll further down and you’ll find
an interview with Sagi about his experience with SIGRed.

CVE-2018-8174 (“Double Kill”)

A use-after-free bug in the VBScript engine used by Internet Explorer that allows arbitrary code execution
by making IE chew on a maliciously crafted URL, which for some perverse reason can be done even if
the victim just has IE on their system without ever using it themselves. This vulnerability was discovered
under unfavorable circumstances, by researchers coming across active attacks in the wild already utilizing
working exploits (these attacks have been attributed to a DPRK nation-state actor). This discovery was made
independently by Kaspersky and the Advanced Threat Response Team at 360 core security, who gave the
vulnerability its name.

Microsoft’s web page detailing this vulnerability acknowledges by name Anton Ivanov and Vladislav Stolyarov
from Kaspersky; Ivanov later became the Vice President of Threat Research at Kaspersky, still tweets now and
then about strange new threats he’s run across (such as this Piece of Linux Ransomware), and recently gave a
presentation at the Security Analyst Summit about the “WizardOpium” campaign, an attempt to target visitors of
DPRK news sites via a zero- day vulnerability in Google Chrome.

WHAT IS VULNERABILITY RESEARCH | 24

CVE-2018-7600 (“Drupalgeddon 2”)

A code injection vulnerability in Drupal, an open-source content management system used by over a million
websites around the world including governments, retailers and financial institutions. When receiving certain
input (FAPI AJAX requests, if you insist), a Drupal server would allow some of the input to “leak” into the
server’s code itself, enabling an attacker to make the server execute code without administrator consent—this
basically allows a remote hostile takeover of a website. Happily, this vulnerability was discovered by Jasper
Mattsson, one of the contributors to the Drupal project. There was no need for an elaborate disclosure process;
all that was left was to roll out the patch.

CVE-2017-11882

A stack buffer overflow bug in MS-Office that allows a maliciously crafted document to run arbitrary code,
making malicious documents a much more potent attack vector (as the victim, double click the document and
you’re infected; you do not get a “please enable macros” prompt, do not pass “go” and do not collect $200). Once
publicly known, it became a favorite of commodity malware distributors as well as nation-state actors. This
vulnerability, which at the time had existed undetected for 17 years(!), was discovered by security researchers
at Embedi—a now-defunct cybersecurity startup company headquartered in Berkeley, USA, focused on
immunizing IoT/embedded/smart end-point devices against 0- and 1-day attacks.

CVE-2017-5753 (“Spectre”) and CVE-2017-5754 (“Meltdown”)

Well… imagine that your employer maintains this library full of documents, some classified and some not,
and to read a classified document you have to present your credentials to the librarian. But the librarian is
very short on time, so the moment you even express interest in any documents at all, she sends an errand boy
to go fetch them from the back room just in case, even if the credentials will not check out; Also, the errand
boy puts any requested documents into the librarian’s Quick Access Drawer under the front desk, because
clearly these documents are popular now seeing as you just asked for them, and in five minutes some other
person will probably be here to check them out again. So you turn to the librarian and say, “hey, go look at
the company salary records for me, and if Bob’s salary is higher than mine, I want to borrow War and Peace;
otherwise, I want to borrow Romeo and Juliet”. The errand boy heads out back, looks at the company salary
records, finds out that Bob’s salary is twice yours and concludes that you’ll be borrowing War and Peace. On the
way back, he discreetly puts War and Peace (and the salary records) into the quick access drawer, and reports
to the librarian. The librarian adjusts her glasses, looks at you sternly and says, “excuse me, you’re not reading
War and Peace or Romeo or Juliet or anything, your request started with ‘look into the company salary records…’
and you lack the proper credentials”. So you say “fine, I just want to borrow War and Peace then”. And the
librarian is able to produce it instantly from her Quick Access Drawer, and thus answers your question about
Bob without meaning to.

WHAT IS VULNERABILITY RESEARCH | 25

The Spectre vulnerability is kind of like that, except the librarian is the operating system, the errand boy is the
CPU, the Quick Access Drawer is the cache and you’re a rogue process with no permissions. This vulnerability
broke all OS security boundaries and was at first dismissed by some in the semiconductor industry because it
seemed too disastrous to be true. The discovery of this exotic vulnerability was a group effort that drew from
people with many diverse backgrounds—including researchers from various academic institutions, all with a
strong background in side-channel attacks, many of whom PhDs; co-author of SSL/TLS protocol who in a candid
personal bio relates that he originally studied biology and planned to become a veterinarian; and a researcher
from Google’s Project Zero, a team of analysts tasked with hunting vulnerabilities (According to one xoogler,
Project Zero was established because “It’s a major source of frustration for people writing a secure product
to depend on third party code [..] motivated attackers go for the weakest spot. It’s all well and good to ride a
motorcycle in a helmet, but it won’t protect you if you’re wearing a kimono.”)

CVE-2015-0565

A sandbox escape found in Google’s Native Client sandbox, which is intended to allow running assembly inside
a web browser. The attack was based on what’s called a “rowhammer exploit”, and is truly the stuff of black
magic; even explaining it with a hand-wavey analogy would be a stretch. Let’s just say that some types of RAM
were built in such a way that enables an unintended effect—by reading certain bits repeatedly, an attacker
can cause nearby bits to change their value, with disastrous potential results for security boundaries (a
more involved technical explanation of the rowhammer effect appears here). The idea behind the attack was
first proposed in 2014 in a joint paper by researchers from Carnegie Mellon university and Intel; a working
implementation was delivered a year later in 2015 by Mark Seaborn, a member of the aforementioned Project
Zero. He fed the sandbox legitimate-seeming instructions and then once these were approved by the sandbox,
he abused rowhammer to flip bits and perturb the instructions into a slightly different form that could be used
to escape the sandbox. Nothing about this is really particular to NaCl, and Seaborn noted: “I picked NaCl as the
first exploit target because I work on NaCl and have written proof-of-concept NaCl sandbox escapes before”.

CVE-2014-6271 (“Shellshock”)

An injection vulnerability which leads to privilege escalation in bash, a popular command-line interface that’s
often installed as the default in unix-based systems. You might rightfully wonder how the phrase “vulnerability
in bash” even parses—if you’re supplying input to bash then you’re running commands already, what does
the vulnerability have left to do? As it turns out, upon startup bash would scan environment variables for the
magic sequence () {, signifying a function exported as an environment variable; then once it encountered
the matching } it would keep on evaluating and executing the included code, so that if you had an environment
variable of the form () {normal _ func _ definition}; execute _ nasty _ command, every instance of
bash would execute _ nasty _ command on startup. The crux is any Joe User could create these environment
variables, which would then go on to be executed the next time the system administrator invokes bash, and thus
by using shellshock every single user could effectively have system administrator privileges—a catastrophic
result. This vulnerability was discovered by Stéphane Chazelas, UNIX/Linux and Telecom Specialist at SeeByte
SeeByte Ltd.—a company specializing in software solutions for autonomous underwater vehicles.

WHAT IS VULNERABILITY RESEARCH | 26

CVE-2014-0160 (“Heartbleed”)

A buffer overread vulnerability in the OpenSSL cryptography library. It allowed clients to read chunks of
memory out of the server that they weren’t supposed to, and every time we feel the need to explain it we just
link to the relevant xkcd, which explains the attack about as clearly as possible in 6 terse comic panels. The
vulnerability was independently discovered by Neel Metha, an engineer at Google, who related how he found
the bug following a “laborious” line-by- line review of OpenSSL’s source code; and security firm Codenomicon,
who provided the vulnerability’s logo and catchy branding.

CVE-2015-7547

A stack buffer overflow bug in GNU libc—the GNU Project’s implementation of the C standard library. The
vulnerability could allow remote code execution on victim machines, and is noteworthy due to the nigh-ubiquity
of the vulnerable component. The bug was independently discovered by Jaime Cochran and Marek Vavruša,
both of whom then worked at Cloudflare, a US-based web infrastructure company.

CVE-2015-3824 (“StageFright”)

One of several vulnerabilities in the mediaserver component of android OS, all due to integer overflows
and underflows. The vulnerability allowed attackers using a malformed MMS message to install arbitrary
applications on victim Android phones without requiring any user interaction—only requiring the victim’s phone
number. Noteworthy because of its obscenely wide-reaching attack vector and its bypassing the careful habits
of even the most security-conscious user, this vulnerability was discovered by Joshua Drake, then a researcher
with mobile security firm Zimperium and formerly a lead exploit developer for the Metasploit framework.

CVE-2012-4929 (“CRIME”), CVE-2014-3566 (“POODLE”), CVE-2016- 0800 (“DROWN”)

A continuous six-year-long moment where the infosec community collectively discovered that theoretical
cryptographic attacks—such as oracle attacks, downgrade attacks and precomputation attacks—were actually
applicable to real-life cryptography, and namely SSL. We already have an extended write-up on the theory and
practice behind these attacks and the people who uncovered them, titled Cryptographic Attacks: A Guide for the
Perplexed, and so we won’t replicate it here.

CVE-2008-4250

A buffer overflow vulnerability in MS-Windows’ server service (don’t look at us, we don’t name these; it
apparently deals with file and printer sharing). This vulnerability allowed attackers to execute arbitrary code
on victim systems. The remaining details of its discovery are hazy, and seem to have involved fully working
exploits being found in the wild by Microsoft, who rushed to fix the problem and create an emergency patch.
This vulnerability was mostly infamous for being a main infection vector for the conficker worm, one of the
widest-reaching worms ever which is estimated to have infected millions of machines.

WHAT IS VULNERABILITY RESEARCH | 27

CVE-2008-1447

A bug in the DNS protocol—that’s a grim opening already; not “an implementation of” the DNS protocol, the DNS
protocol itself. The bug allows an attacker to cache-poison a DNS server, that is, make it believe that a domain
name corresponds to an attacker-crafted IP address, rather than the true IP address, and then pass on this
misinformation to clients. This is done by abusing the fact that DNS was not designed for security: When a DNS
server sends a request to its fellow server to retrieve the correct IP address for some domain, its only method
of verifying the response is that it contains the correct Transaction ID (TXID) that the server sent originally.
At the time these TXIDs had 16 bits, so an attacker attempting to forge a DNS response had a one-in-65536
chance to guess the TXID correctly. The attack was able to induce a DNS server to make these requests for the
IP of a specific domain again and again, tens of thousands of times, until the attacker—by pure chance—finally
nailed the correct TXID (in fact, there was a mitigation in place to prevent this—servers were supposed to only
update their internal cache with a new IP address for a given domain once a day—but the attack bypassed this by
querying many different subdomains: aaaa.domain.com, bbbb.domain.com and so on; responses to such
DNS queries were allowed to contain IP addresses for the main domain.com). Back in 2008, Glenn Fleishman
and Rich Mogull at Macworld explained the issue in our favorite style:

This vulnerability was discovered by the late Dan Kaminsky, a US security researcher, also known for his work
on enumerating victims of the Sony rootkit and of the Conficker botnet. The attack was eventually staved off
by using a kludgy hack to increase the effective size of the TXID so that the attacker’s chances of guessing the
correct TXID become negligible, even if they make many attempts.

We could stay here forever reciting vulnerabilities and the names of many (many, many, many) vulnerability
researchers active today who have uncovered and continue to uncover them, but we hope that this sampler
gave you somewhat of an idea of what vulnerabilities are, who finds them and how.

Alex is set up with a blind date named Charlene. But Alex has an enemy named Beth. Beth finds
out that Alex is supposed to meet someone at Cafe Depot for coffee at 12.10 p.m., but doesn’t
know the blind date’s name. Beth sends 50,000 women to the cafe—rather crowded, now—all
with different names. ‘Hey, Alex, I’m Alexis, aren’t I here to meet you?’ ‘Hey, Alex, I’m Zelda,
aren’t I here to meet you?’ [..] If Beth’s hired hand named Charlene meets Alex before his real
blind date, the next thing he knows, he’s been slipped a mickey, and wakes up in a hotel room
with a scar where his kidney was, his wallet missing, and a whopping room service bill.

WHAT IS VULNERABILITY RESEARCH | 28

Every one of the names mentioned above, and many who weren’t, would have made a great
interview subject; but we only see one of them at the same group meeting every Wednesday.
Therefore, please enjoy the following short Q&A with Sagi Tzadik, who discovered the SIGRed
vulnerability (CVE-2020-1350).

Q. How did you get into vulnerability research?

A. Originally I was introduced to the infosec field via the Game-Hacking community. I remember
10-year-old me examining cheat codes for a game called MapleStory, which were written in
assembly, and wondering what was going on behind the scenes. Then I naively searched for
materials online about being a “hacker” and found information about web-hacking (SQLi, XSS
etc), perhaps because this was most accessible.

Q. What technologies and skills were the most important milestones for you?
Any favorite study resources (courses, textbooks, tutorials) to recommend?

A. I think that the core of the infosec community is the question “How does it work?”. This is
why I think that the ability to do a proper code review, debug and reverse-engineer to some
degree are vital skills for vulnerability research. You should also be familiar with the specifics
of the platform that you are researching (be it PHP or Windows)—because you should be able to
identify use of bad practices—“Learn the rules like a pro so you can break them like an artist”.
While I learnt reverse-engineering from old sources like Lena151—today there’s much more
modern stuff out there, like LiveOverflow which I would definitely recommend! If you are more
into written materials I will shamelessly plug the very CPR blog you are reading. These days I
consume most of my updates from Twitter, /r/netsec and following GitHub accounts.

Q. How did you end up researching Microsoft DNS server specifically?

A. As I said, I come from a web-hacking background so DNS is quite familiar to me. I also
found it weird that SMB and RDP received so much attention while DNS can be used just as
well in order to compromise an organization, so I decided to have a look there.

Q&A
with Sagi Tzadik,
Discoverer of SIGRed

WHAT IS VULNERABILITY RESEARCH | 29

Q. How did the investigation that led to SIGRed go? What challenges did you face?

A. The first challenge was to reverse-engineer the binary and understand the complete
flow—since the server receives an incoming query until it sends its answer. Then I had to
overcome multiple obstacles such as:

• How do I make the target DNS server parse arbitrary responses that I have control of,
even though it does not trust me?

• How can I send extremely large responses? (because UDP/DNS is size-limited to 512/4096 bytes)
• How can I fit even more data inside these large responses (64KB is not enough to trigger the bug)?

I found solutions to all of these problems by reading RFC documents (the most I read in my
entire life) and reverse-engineering.

Q. What are your favorite and least favorite parts about vulnerability research?

A. My favorite part is definitely the dopamine hits. That feeling when you manage to
successfully find a bug after weeks of investment is irreplaceable. There’s also this feeling of
“I may be the first one to ever notice this” and “I could potentially hack XYZ servers if I wanted
to”. The least favorite part in my opinion is the realization that not every bug is a vulnerability
and sometimes you will not find a bug because either it does not exist or you simply missed it,
and there’s nothing you can do about it.

Q. What do you have to say to a newbie considering a career in your field?
How would you describe your work to them?

A. I usually describe my work to my friends as “Glorified QA”. At the end of the day I am looking
for bad practices but in source code that is not my own. If you consider a career in this field, I
would recommend ensuring that you are really passionate about it. This is hard work, very time
consuming and you are likely to face a lot of failures while doing it. But with every failure, the
next success becomes sweeter.

Q. What do you think are the most important challenges facing vulnerability researchers
today? How will the landscape change?

A. Exploit mitigations do work. They do make our life harder. 10 years ago it would take only
a single bug to exploit a browser. These days it takes much more than that, to the point that
companies offer a ridiculous amount of money for a stable exploit. Also, companies are now
more security-aware, which I am sure eliminates a big portion of the bugs. I mean, 10 years ago
not a lot of developers were writing tests for their code, but this is definitely a more common
practice now.

WHAT IS VULNERABILITY RESEARCH | 30

The Long Game and
The Conclusion
Where is the field of vulnerability research going?
Some time ago we asked our security research
tech leader, Eyal Itkin, about this. Eyal is himself
responsible for several dozen coordinated
vulnerability disclosures, as well as a mitigation
that was integrated into common implementations
of the C standard library in 2020. He answered, with
some apprehension: “successful exploitation will
become more demanding, and I won’t be surprised
if many in the field don’t keep up”.

Eyal’s answer echoes Sagi above, who noted
the incessant march of ever-more-pervasive
mitigations. As attackers have a more and more
difficult time attacking garden-variety applications,
or even accessing the code that will process their
input, they must show ever- increasing proficiency
and creativity when choosing and analysing targets.
Sometimes this means recognizing a component

that has been given an unduly small amount of
attention; other times, it means wrestling with
code several layers of abstraction down from the
obvious attack surface, the author of which made
an active effort that it never be read. In his 2018
SSTIC talk Closed, Heterogeneous Platforms and
the (Defensive) Reverse Engineers’ Dilemma, Halvar
Flake laments this latter trend as not the great win
for defenders that it might seem at first. “Device
and OS vendors misunderstand the iterated nature
of security games [..] commercial attackers pay
[the] cost to build an infrastructure [for analyzing
software] once, defenders have to pay it again
and again. [..] All other platforms [than Linux]
have gotten harder to debug, harder to introspect
[..] these ‘security’ measures have become like
DRM: Primarily an inconvenience to the good guys.
[This is a] net loss for overall security under any
reasonable set of assumptions.”

“SUCCESSFUL EXPLOITATION WILL BECOME
MORE DEMANDING, AND I WON’T BE SURPRISED

IF MANY IN THE FIELD DON’T KEEP UP”

WHAT IS VULNERABILITY RESEARCH | 31

While advances in the art of frustrating attackers
have certainly been made, the tools available to
attackers have been evolving, too. We mentioned
before the relatively new ascendancy of the
“fuzzing” paradigm, and its surprising strength.
Another venue for more sophisticated vulnerability
hunting is the heavily theoretical field of Symbolic
Execution—that is, automated analysis that reasons
deductively about code to find input that will induce
it to behave unexpectedly. This technology is not
as ripe for use as fuzzing. In its most naive form,
it struggles with truly imposing roadblocks (e.g.
analyzing 20 conditional statements requires
keeping track of possible states), and its more
applicable form is basically a “smarter fuzzing”
where “interesting” perturbations to existing input
are deduced, instead of searched for at random.
As far as we know there is no Symbolic Execution
tool that will allow the average researcher a
comparable experience to a fuzzer with regards
to ease of setup and yield of vulnerabilities. Still,
the technology is theoretically there: Wikipedia
lists almost a dozen different symbolic execution
tools, even if “many tools [..] have not been made
available to the public at large”, and one such
tool is Microsoft’s SAGE, which according to the
company “has found many previously-unknown
security vulnerabilities in hundreds of Microsoft
applications, including image processors, media
players, file decoders, and document parsers [..] [as
well as] roughly one third of all the bugs discovered
by file fuzzing during the development of Microsoft’s
Windows 7”. This was already happening in the late
2000s (and reported in the paper above, dated 2013).
One can only assume that as more time passes, this
technology will improve and proliferate.

Vulnerability research is already a practice-
oriented, rather than theory-oriented, field. We
speak from bitter experience when we say that one
week of access to a setup that already works, or
one conversation with someone who’ll hand you the
right script and point you in the right direction, can
be easily worth a mountain of familiarity with the
fundamentals and half a year of reasoning from first
principles. The above-described race of ever more
complicated and specialized tools, targeting ever
more obtuse and inaccessible code, seems poised
to amplify this feature of the field further. We can
only hope this trend will be tempered by the ancient
tradition where one practitioner magically stops
what they were doing for a minute, even though
they have no apparent incentive to do so, says
“wait… why is this so difficult? I bet it could be made
much less difficult”, and a year later every wide-
eyed beginner gets to do some research the easy
way. 30 coordinated disclosures later, if enough
users are dragged kicking and screaming to apply
their software updates, maybe the next Wannacry
incident doesn’t happen. We are sadly a long way
away from a world where everyone is Excellent to
Each Other, as per the CCC banner, but this would
be a nice place to start.

WHAT IS VULNERABILITY RESEARCH | 32

Worldwide Headquarters
5 Ha’Solelim Street, Tel Aviv 67897, Israel | Tel: 972-3-753-4555 | Fax: 972-3-624-1100 | Email: info@checkpoint.com

U.S. Headquarters
959 Skyway Road, Suite 300, San Carlos, CA 94070 | Tel: 800-429-4391; 650-628-2000 | Fax: 650-654-4233

www.checkpoint.com

© 2022 Check Point Software Technologies Ltd. All rights reserved.

